طراحی مدل برای آربیتراژ آماری سهام با استفاده از شبکه‌های عصبی عمیق، جنگل‌های تصادفی و درخت‌‌های با شیب تقویت‌شده

نویسندگان

  • رضا تهرانی استاد دانشکده مدیریت، دانشگاه تهران، تهران، ایران
  • علیرضا سارنج استادیار، گروه مدیریت صنعتی و مالی، دانشکده مدیریت و حسابداری، پردیس فارابی، دانشگاه تهران، قم، ایران.
  • فروزان کمری دانشجوی دکتری، گروه مدیریت صنعتی و مالی، دانشکده مدیریت و حسابداری، پردیس فارابی، دانشگاه تهران، قم، ایران.
  • میثم شهبازی استادیار، گروه مدیریت صنعتی و مالی، دانشکده مدیریت و حسابداری، پردیس فارابی، دانشگاه تهران
چکیده مقاله:

آربیتراژ آماری، استراتژی‌ رایج سرمایه‌گذاری در بازارهای ناکاراست که نسبت به بازار خنثی بوده و بدون نیاز به سرمایه اولیه از هر دو جهت بازار کسب سود می‌کند. این تحقیق برآن است تا ضمن طراحی مدل‌های مناسب برای آربیتراژ آماری سهام با استفاده از الگوریتم شبکه‌های عصبی عمیق، جنگل‌های تصادفی، درخت با شیب تقویت شده و ترکیب ساده این مدل‌ها، به تحلیل و بررسی بازده و ریسک مدل‌های طراحی شده بپردازد. بدین منظور از اطلاعات همه شرکت‌های عضو بورس اوراق بهادار تهران از 1385 تا 1396 برای ایجاد سیگنال‌های معاملاتی استفاده شده است. طراحی مدل‌های تحقیق و کدنویسی‌های مربوطه و همچنین آزمون فرضیات تحقیق که با t-test مورد تحلیل قرار گرفته‌ در نرم‌افزار R انجام شده است. یافته‌های تحقیق نشان‌دهنده آن است که بیشترین مقدار بازده 24/4 درصد در هر روز برای k=5 است (بدون هزینه معاملات) که متعلق به مدل ترکیبی ساده (ENS) است. همچنین کمترین میزان ارزش در معرض ریسک (45/4%-) و کمترین مقدار ریزش مورد انتظار(57/5%-) برای k=20 متعلق به مدل شبکه عصبی عمیق(DNN) و بالاترین مقدار نسبت بازده به انحراف معیار 072/1 است که متعلق به مدل RAF به ازاءk=20 می‌باشد. علاوه برآن نتایج تحقیق نشان می‌دهند بازده‌های اخیر سهم قدرت پیش‌بینی‌کنندگی بالاتری در مقایسه با بازده‌های قبل‌تر دارند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

آزمون عملکرد الگوریتم جنگل های تصادفی و الگوریتم شبکه عصبی عمیق در استراتژی آربیتراژ آماری

در این تحقیق به آنالیز اثر بخشی الگوریتم جنگل­های تصادفی در زمینه آربیتراژ آماری پرداخته شده است، همچنین برای سنجش عملکرد الگوریتم جنگل­های تصادفی در زمینه آربیتراژ آماری نسبت به دیگر مدل­های ارائه شده در پژوهش­های پیشین، مقایسه نتایج بدست آمده از کاربرد این الگوریتم با الگوریتم شبکه­های عصبی عمیق انجام شده است. مدل­های مورد نظر با اطلاعات مربوط به قیمت سهام آموزش داده شده و خروجی بدست آمده از ...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

طراحی سیستم معاملات تکنیکی سهام با استفاده از مدل ترکیبی شبکه عصبی MLP و الگوریتم‌های تکاملی

توسعه سیستم­های معاملاتی سهام با استفاده از الگوریتم­های تکاملی (EA) طی چند سال اخیر به موضوعی پرمخاطب در حوزه مالی مبدل ‌شده است. در پژوهش حاضر، سیستم معاملاتی تکنیکی هوشمند با بهره­گیری از مدلی مرکب از شبکه عصبی MLP و الگوریتم‌های تکاملی شامل الگوریتم ژنتیک (GA)، الگوریتم بهینه‌سازی مورچگان پیوسته (ACOR) و الگوریتم بهینه‌سازی ازدحام ذرات (PSO) پیشنهادشده است. داده‌های مربوط به 15 ش...

متن کامل

طراحی سبد سهام با قابلیت پیروی از بازده بازار با استفاده از رویکرد نظریه ماتریس‌های تصادفی

هدف این مقاله طراحی سبد سهام با قابلیت پیروی از بازده بازار با استفاده از روش نظریه ماتریس‌های تصادفی می باشد. در این پژوهش، با استناد به مطالعات پیشین درخصوص مشارکت تمامی سهم‌ها در بزرگترین ویژه‌مقدار که نشان‌دهنده روند بازار است،‌ با استفاده از کمیت ST، میزان مشارکت هر سهم در روند بازار را استخراج نموده و سبدی از گروه‌های مختلف (سهام دارای بیشترین میزان مشارکت در روند،‌مشارکت متوسط و مشارکت ک...

متن کامل

طراحی کنترل‌کنندۀ PID تطبیقی با استفاده از الگوریتم تقریبات تصادفی انحرافات هم‌زمان و آموزش شبکۀ عصبی

در این مقاله، روش جدید طراحی کنترل‌کنندۀ داده‌محور[i]، با استفاده از الگوریتم تقریبات تصادفی انحرافات هم‌زمان[ii] (SPSA) و آموزش شبکۀ عصبی ارائه شده است. در روش پیشنهادی، الگوریتم تقریبات تصادفی انحرافات هم‌زمان با استفاده از آموزش شبکۀ عصبی، مقداردهی می‌شود که این امر باعث افزایش سرعت همگرایی و همچنین بهبود عملکرد الگوریتم در برابر تغییرات سیگنال مرجع می‌شود. در SPSA فرض بر این است که کنترل‌کن...

متن کامل

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 3

صفحات  23- 45

تاریخ انتشار 2019-09-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023